import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
iris_data=pd.read_csv("iris.csv",encoding="utf-8")
y=iris_data.loc[:,"Name"]
x=iris_data.loc[:,["SepalLength","SepalWidth","PetalLength","PetalWidth"]]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,train_size=0.8,shuffle=True)
clf=SVC()
clf.fit(x_train,y_train)
y_pred=clf.predict(x_test)
print("正解率=",accuracy_score(y_test,y_pred))import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC,LinearSVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score,classification_report
wine=pd.read_csv("wine/winequality-white.csv",sep=";",encoding="utf-8")
y=wine["quality"]
x=wine.drop("quality",axis=1)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
model=RandomForestClassifier()
#model=LinearSVC()
#model=SVC()
#model=KNeighborsClassifier()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
print(classification_report(y_test,y_pred))
print("正解率=",accuracy_score(y_test,y_pred))import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC,LinearSVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score,classification_report
wine=pd.read_csv("wine/winequality-white.csv",sep=";",encoding="utf-8")
y=wine["quality"]
x=wine.drop("quality",axis=1)
newlist=[]
for v in list(y):
if v<=4:
newlist+=[0]
elif v<=7:
newlist+=[1]
else:
newlist+=[2]
y=newlist
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
model=RandomForestClassifier()
#model=LinearSVC()
#model=SVC()
#model=KNeighborsClassifier()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
print(classification_report(y_test,y_pred))
print("正解率=",accuracy_score(y_test,y_pred))import pandas as pd
df=pd.read_csv("kion/kion10y.csv",encoding="utf-8")
md={}
for i,row in df.iterrows():
m,d,v=(int(row['月']),int(row['日']),float(row['気温']))
key=str(m)+"/"+str(d)
if not(key in md):
md[key]=[]
md[key]+=[v]
avs={}
for key in md:
v=avs[key]=sum(md[key])/len(md[key])
print("{0} : {1}".format(key,v))次世代IT人材育成セミナー?