import cv2
import matplotlib.pyplot as plt
import keras
from keras.models import Sequential
from keras.layers import Dense
import numpy as np
in_size=28*28
out_size=10
model=keras.models.Sequential()
model.add(Dense(512,activation='relu',input_shape=(in_size,)))
model.add(Dense(out_size,activation='softmax'))
model.load_weights('mnist-mlp-weights.h5')
im=cv2.imread("digit7.png")
im=cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
im=cv2.resize(im,(28,28))
plt.imshow(im,cmap='gray')
plt.show()
im=im.reshape(in_size).astype('float32')/255
res=model.predict(np.array([im]),verbose=0)
res=res[0]
print("digit=",res.argmax())import matplotlib.pyplot as plt
import keras
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers import Dense,Dropout,Activation,Flatten
from keras.layers import Conv2D,MaxPooling2D
%matplotlib inline
num_classes=10
im_rows=32
im_cols=32
in_shape=(im_rows,im_cols,3)
labels=['airplane','automobile','bird','cat','deer','dog','frog','horse','ship','truck']
(X_train,y_train),(X_test,y_test)=cifar10.load_data()
X_train=X_train.astype('float32')/255
X_test=X_test.astype('float32')/255
y_train=keras.utils.to_categorical(y_train,num_classes)
y_test=keras.utils.to_categorical(y_test,num_classes)
model=Sequential()
model.add(Conv2D(32,(3,3),padding='same',input_shape=in_shape))
model.add(Activation('relu'))
model.add(Conv2D(32,(3,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(64,(3,3),padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64,(3,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
model.load_weights('cifar10-cnn-weights.h5')
im=cv2.imread("frog1.jpg")
im=cv2.cvtColor(im,cv2.COLOR_BGR2RGB)
im=cv2.resize(im,(32,32))
plt.imshow(im)
plt.show()
im=im.reshape(in_shape).astype('float32')/255
r=model.predict(np.array([im]),batch_size=32,verbose=0)
res=r[0]
for i,acc in enumerate(res):
print(labels[i],"=",int(acc*100))
print("---")
print("予測した結果=",labels[res.argmax()])import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import keras
from keras.models import Sequential
from keras.layers import Dense,Dropout
data=pd.read_csv('man-and-woman.csv')
data=data.sample(frac=1)
x_data=data.loc[:,['tall','weight']]
y_data=data.loc[:,'sex']
labels={
'man': [1,0],
'woman': [0,1]
}
y_data=np.array(list(map(lambda x:labels[x],y_data)))
x_train,x_test,y_train,y_test=train_test_split(x_data,y_data,train_size=0.8)
model=Sequential()
model.add(Dense(10,activation='relu',input_dim=2))
model.add(Dense(2,activation='softmax'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.fit(x_train,y_train,batch_size=20,epochs=10)
score=model.evaluate(x_test,y_test)
print("正解率=",score[1]," loss=",score[0])次世代IT人材育成セミナー?