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e “Building High-level Features Using Large Scale
Unsupervised Learning”, Proc. of 29th ICML,2012
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OpenPose (2017.Apr)
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* https://github.com/ZheC/Realtime Multi-
Person Pose Estimation
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Word2Vec

* Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey

Dean, 2013, ICLR
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CBOW &Skip-gram
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https://deepage.net/bigdata/machine learning/2016/09/02/word2vec power of word vector.html
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https://deepage.net/bigdata/machine_learning/2016/09/02/word2vec_power_of_word_vector.html
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