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ネコを認識する計算機？

• 2012年6月26日
• Google社の人工知能が、人間に教わることなく自力で
ネコの顔を認識することに成功した、と発表。
(https://googleblog.blogspot.jp/2012/06/using-large-
scale-brain-simulations-for.html)

• Deep Learning（深層学習）
• YouTubeからランダムに1000万枚の200x200画像

• 1000台の計算機（16,000コア）で3日間かけて学習

• ただ画像を見せるだけ
• 画像が何か、は教えない（使わない）

• 特定の画像に強く反応するニューロンの創生
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原論文

• “Building High-level Features Using Large Scale 
Unsupervised Learning”, Proc. of 29th ICML,2012
• 人の顔、ネコの顔、人の身体を識別できた

最も反応する顔
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AlphaGoがイ・セドルに勝利

• Google DeepMind社が開発した囲碁の人工知能
• 2015年10月

• ヨーロッパ王者（プロ二段）の樊麾（Fan Hui）を5-0で破った。
• AIがプロ棋士をハンディキャップなしの19路盤で破ったのは
これが初めて。

• 2016年3月8日～15日
• 世界王者（プロ九段）の
イ・セドルを4-1で破った。

• 囲碁界ではかなり衝撃的

• 2017年5月23日～27日
• 世界最強棋士（プロ九段）の
カ・ケツを3-0破った。

• AlphaGO引退表明
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OpenPose (2017.Apr)

• カーネギーメロン大学（CMU）の Zhe Caoらが
「Realtime Multi-Person pose estimation」の論文で
発表

•静止画を入力するだけで人間の関節点を検出

•動画像内に複数人の人物がいても、リアルタイム
に検出することも可能（GPU使用）

•身体だけでなく、顔と手まで解析可能

• https://github.com/ZheC/Realtime_Multi-
Person_Pose_Estimation
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静止画からの骨格検出
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動画からの骨格検出
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セグメンテーション

•物体検出
• 矩形枠で、どこに何があるかを識別
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セグメンテーション

• セマンティックセグメンテーション
• イメージをピクセルレベルとクラスラベルに関連付ける
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GAN（敵対的生成ネットワーク）

•情報生成型ニューラルネットワーク
• 現実には存在しない情報を生成することが可能

• 深層学習に必要な膨大な学習用データを生成

• 存在しない人の顔を生成
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GAN情報

• GAN:敵対的生成ネットワークとは何か

• GAN（敵対的生成ネットワーク）とは

•創造的AIと敵対的AIの不思議な関係、そしてアイ
デンティティへの脅威

• NVIDIA's AI Creates Beautiful Images From Your 
Sketches
• Semantic Image Synthesis with Spatially-Adaptive 

Normalization

• Online DEMO

• NVIDIA playground
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https://www.imagazine.co.jp/gan%EF%BC%9A%E6%95%B5%E5%AF%BE%E7%9A%84%E7%94%9F%E6%88%90%E3%83%8D%E3%83%83%E3%83%88%E3%83%AF%E3%83%BC%E3%82%AF%E3%81%A8%E3%81%AF%E4%BD%95%E3%81%8B%E3%80%80%EF%BD%9E%E3%80%8C%E6%95%99%E5%B8%AB/
https://ledge.ai/gan/
https://note.com/masayamori/n/n9fddedd9a6f5
https://www.youtube.com/watch?v=hW1_Sidq3m8
https://nvlabs.github.io/SPADE/
http://nvidia-research-mingyuliu.com/gaugan
https://www.nvidia.com/en-us/research/ai-playground/
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Word2Vec

• Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey 
Dean, 2013, ICLR

•単語をベクトルに変換

•自然言語処理における新しい手法
• 単語で演算が可能

• 王ー男＋女＝女王

• パリーフランス＋日本＝東京

•自然言語の連なり関係から単語の類似性を抽出
する
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CBOWとSkip-gram
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私

は

学校
に

行く

私
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学校 に
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https://deepage.net/bigdata/machine_learning/2016/09/02/word2vec_power_of_word_vector.html

https://deepage.net/bigdata/machine_learning/2016/09/02/word2vec_power_of_word_vector.html
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Deep Learning（深層学習）

• ネコの認識、囲碁
• 人間はやり方を教えていない

• 学習するための方法を作りだした（深層学習）

• 膨大なサンプルから自動的にやり方を発見

• どんな方法？
• 人間の脳

• 数百億個のニューロン（神経細胞）

• 数百兆個のシナプス（神経結合）

• その結合により情報を処理

• 脳を真似た構造
• ニューラルネットワーク（神経回路網）

神経細胞

軸索

シナプス
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ニューラルネットワーク

•形式ニューロン（McCulloch & Pitts,1943）
• 生物のニューロンを形式的に表現したモデル

• 人工ニューロンともいう

• ニューラルネットワーク
• 脳機能の特性を計算機上に表現する数理モデル

• 形式ニューロンのようなノードを多数個つないだもの
• フィードフォワードネットワーク

• パーセプトロン

• リカレントネットワーク
• ホップフィールドネットワーク

• 畳み込みニューラルネットワーク（CNN）

入力 出力

入力 出力
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機械学習とは？

•人間が自然に行っている学習能力と同様の機能
をコンピュータで実現しようとする技術・手法（ウィ
キペディア）

•機械学習の種類
• 教師あり学習（Supervised Learning）

• 教師なし学習（Unsupervised Learning）

• 強化学習（Reinforcement Learning）

•実現技法
• ニューラルネットワーク、遺伝的アルゴリズム、相関学
習、サポートベクターマシン、クラスタリング、Q学習
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機械学習の歴史

デジタルコンピュータの登場
（ENIAC）

形式ニューロン
（McCulloch & Pitts）

パーセプトロン
（Rosenblatt）

パーセプトロンの限界を指摘
（Minsky & Papert）

ホップフィールドネット
（Hopfield）

1940 1950 1960 1970 1980 1990 2000 2010 2020

ボルツマンマシン
（Hinton）

バックプロパゲーション
（Ramelhart）

ネオコグニトロン
（福島邦彦）

畳み込みニューラルネット
（Homma,LeCun）

オートエンコーダ
（Hinton）

ネコの顔認識
（Google）

AlphaGoがプロ棋士に勝利
（Google）
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機械学習の歴史

デジタルコンピュータの登場
（ENIAC）

形式ニューロン
（McCulloch & Pitts）

パーセプトロン
（Rosenblatt）

パーセプトロンの限界を指摘
（Minsky & Papert）

ホップフィールドネット
（Hopfield）

1940 1950 1960 1970 1980 1990 2000 2010 2020

ボルツマンマシン
（Hinton）

バックプロパゲーション
（Ramelhart）

ネオコグニトロン
（福島邦彦）

畳み込みニューラルネット
（Homma,LeCun）

オートエンコーダ
（Hinton）

ネコの顔認識
（Google）

AlphaGoがプロ棋士に勝利
（Google）

第1次AIブーム 第2次AIブーム 第3次AIブーム
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教師あり学習
（Supervised Learning)

•入力と教師信号の組を与える

•出力を教師信号に近づけるように学習する
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学習器

(0,0,1,0,0,0,1,0,...)

(0,1,1,1,0,1,0,0,...)

(1,1,1,1,0,1,0,0,...)

(1,1,1,1,0,1,0,0,...)

(1,1,1,1,1,1,0,0,...)

5

5 25次元ベクトル

(1,0,0,0,0)

(0,1,0,0,0)

(0,0,1,0,0)

(0,0,0,1,0)

(0,0,0,0,1)

5次元教師信号
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教師なし学習
（Unsupervised Learning）

•入力信号だけを入れて学習する

•入力集合が持つ潜在的な特徴・構造を抽出する
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学習器
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強化学習
（Reinforcement Learning）

•目的だけを与えて、やり方は与えない

•試行錯誤を繰り返してやり方を見つける

21
エージェント

環境

崖歩き問題
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パーセプトロン

• 1957 Rosenblattらによって提案
• S,A,Rの3層ニューラルネットワーク

• S層（感覚・入力層）とA層（連合・中間層）の間はランダ
ム結合

• A層とR層（反応・出力層）間の重みを学習する

22

S層

R層

A層
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形式ニューロン

•入力の積和からしきい値を引いた値で出力が決まる
• 𝑓(𝑥)：階段状関数（ステップ関数）
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𝑥1

𝑥2

𝑥𝑖

𝑥𝑛

・・・
・・・

𝑦

ℎ

𝑦 = 𝑓 ෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖 − ℎ

𝑤1
𝑤2

𝑤𝑖

𝑤𝑛

𝑓 𝑥 = ቊ
1 (𝑥 ≥ 0)
0 (𝑥 < 0)

𝑓 𝑥
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形式ニューロンの学習

•出力と教師信号との誤差を減らすように重みを修
正する
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𝑥1

𝑥2

𝑥𝑖

𝑥𝑛

・・・
・・・

𝑦

ℎ

𝑤1
𝑤2

𝑤𝑖

𝑤𝑛

𝑠

教師信号
𝑤𝑖 = 𝑤𝑖 + 𝛼 𝑥𝑖(𝑠 − 𝑦)

𝛼 ∶学習率
（小さな正の数）

ℎ = ℎ + 𝛼 𝑠 − 𝑦

𝑠 − 𝑦 が誤差：
• 正しい出力の場合は0
• そうでない場合は1か−1

𝑓 𝑥
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形式ニューロンの学習

• 2入力-1出力の場合
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𝒙𝟏 𝒙𝟐 𝒔

0 0 1

1 0 0

0 1 0

1 1 0

回
数

𝒘𝟏 𝒘𝟐 𝒉 𝒙𝟏 𝒙𝟐 ෍

𝑖=1

𝟐

𝑤𝑖𝑥𝑖 − ℎ 𝒚 𝒔 𝒔 − 𝒚

1 0 0 0 1 0 0 1 0 －1

2 －0.1 0 －0.1 0 0 －0.1 0 1 1

3 －0.1 0 0 0 1 0 1 0 －1

4 －0.1 －0.1 －0.1 1 1 －0.3 0 0 0

5 －0.1 －0.1 －0.1 0 0 －0.1 0 1 1

6 －0.1 －0.1 0 1 0 －0.1 0 0 0

7 －0.1 －0.1 0 0 0 0 1 1 0

収束

𝒘𝟏

𝒘𝟐

𝒉

𝒙𝟏

𝒙𝟐

𝒚
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形式ニューロンの学習
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𝒙𝟏

𝒙𝟐

𝒚

𝑦 = 𝑤1𝑥1 + 𝑤2𝑥2 − ℎ
重みによって
平面が変わる

𝑦, 𝑥1, 𝑥2空間での
1枚の平面

𝑦 = 𝑓 𝑤1𝑥1 + 𝑤2𝑥2 − ℎ

ステップ関数 fを通すこと

で、平面より上か下かを
判別していることになる

𝑓 𝑥 = ቊ
1 (𝑥 ≥ 0)
0 (𝑥 < 0)
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形式ニューロンの学習
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𝒙𝟏

𝒙𝟐𝒙𝟏 𝒙𝟐 𝒔

0 0 1

1 0 0

0 1 0

1 1 0

𝑤1𝑥1 +𝑤2𝑥2 − ℎ = 0

𝑥2 = −
𝑤1
𝑤2

𝑥1 + ℎ

このような平面に
することができれば、
正しく判別できる
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多次元入力の場合は・・・

• 2入力の場合と同様だが、入力ベクトル空間が多
次元となる
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𝒙𝟏

𝒙𝟐𝒚

𝒙𝟑

𝒙𝟒

𝑦 =෍

𝑖=1

𝟒

𝑤𝑖𝑥𝑖 − ℎ

超平面

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒔

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

1 1 0 0 1

0 0 1 0 1

: : : : :

1 1 1 0 1

1 1 1 1 0



次世代
IT人材育成セミナー

パーセプトロンの学習

•形式ニューロンをたくさん並べたもの
• 基本的には形式ニューロンの学習と同様

• A層→R層の重みだけを学習する

• S層→A層はランダム結合
• データの分離度を高める働きをする

29

S層

R層

A層

“A”

“B”

“C”
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パーセプトロンの限界

•形式ニューロンは線形分離器である
• Minsky & Papert (1968)

30
学習可能 学習不可能

？

？
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ランダム変換？
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S層

R層

A層

“A”

“B”

“C”

A群

B群

C群

学習可能

学習不可能

A層の次元が高いと
こうなる可能性が高い

学習できれば・・・
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バックプロパゲーション学習則

•入力層と中間層の間の重みも学習可能
• データは入力層→出力層へ伝搬

• 出力の誤差を出力層→入力層へ逆伝搬

32

入力層
中間層

出力層

出力

誤差

教師
信号

データ
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最急降下法（勾配法）

•関数の極小値を求めたい
1. 適当な数（𝑥 = 5）から始め
る

2. 傾きが正なので、xを大きく
するとyも大きくなる

3. xから𝛼(2𝑥 − 4)を引く
• 𝛼は学習率（0.1とする）

4. xは0.6減って4.4になる

5. これを繰り返すと、xは2に近
づいていく
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𝑦 = (𝑥 − 2)2+1
= 𝑥2 − 4𝑥 + 5

2 5

𝑑𝑦

𝑑𝑥
= 2𝑥 − 4

これを、ネットワークの誤差の減少に使う

𝑧 = 3𝑥3 + 4𝑥2𝑦2 + 𝑦3

𝜕𝑧

𝜕𝑥
= 9𝑥2 + 8𝑦2𝑥

𝜕𝑧

𝜕𝑦
= 3𝑦2 + 8𝑥2𝑦
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出力層の学習

34

𝐸 =
1

2
෍(𝑠𝑖 − 𝑦𝑖)

2

Δ𝑤𝑘𝑗 = −𝛼
𝜕𝐸

𝜕𝑤𝑘𝑗
= −𝛼

𝜕𝐸

𝜕𝑦𝑘

𝜕𝑦𝑘
𝜕𝑢𝑘

𝜕𝑢𝑘
𝜕𝑤𝑘𝑗

中間層

出力層

𝑦𝑖𝑢𝑘

𝑓 𝑥 =
1

1 + 𝑒−𝑥

𝑠𝑖

教師
信号

𝜕E

𝜕𝑦𝑘
=

𝜕

𝜕𝑦𝑘

1

2
෍(𝑠𝑖 − 𝑦𝑖)

2 = −(𝑠𝑖 − 𝑦𝑖)

𝑤𝑘𝑗

𝜕𝑦𝑘
𝜕𝑢𝑘

=
𝜕

𝜕𝑢𝑘

1

1 + 𝑒−𝑢𝑘
= 𝑦𝑘(1 − 𝑦𝑘)

𝜕𝑢𝑘
𝜕𝑤𝑘𝑗

=
𝜕

𝜕𝑤𝑘𝑗
෍𝑧𝑗𝑤𝑘𝑗 = 𝑧𝑗

𝑧𝑗

シグモイド関数

−1

しきい値の役割

Δ𝑤𝑘𝑗 = 𝛼(𝑠𝑖 − 𝑦𝑖)𝑦𝑘(1 − 𝑦𝑘)𝑧𝑗

連鎖律
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中間層の学習

35

入力層
中間層

出力層

Δ𝑤𝑗𝑖 = −𝛼
𝜕𝐸

𝜕𝑤𝑗𝑖

𝑢𝑘𝑤𝑗𝑖
𝑥𝑖

= −𝛼 ෍
𝜕𝐸

𝜕𝑦𝑘

𝜕𝑦𝑘
𝜕𝑢𝑘

𝜕𝑢𝑘
𝜕𝑧𝑗

𝜕𝑧𝑗

𝜕𝑡𝑗

𝜕𝑡𝑗

𝜕𝑤𝑗𝑖

𝑡𝑗
𝑤𝑘𝑗

𝑧𝑗

𝑦𝑖

すべての
出力を考慮

𝜕𝑢𝑘
𝜕𝑧𝑗

=
𝜕

𝜕𝑧𝑗
෍𝑧𝑗𝑤𝑘𝑗 = 𝑤𝑘𝑗

𝜕𝑧𝑗

𝜕𝑡𝑗
=

𝜕

𝜕𝑡𝑗

1

1 + 𝑒−𝑡𝑗
= 𝑧𝑗(1 − 𝑧𝑗)

𝜕𝑡𝑗

𝜕𝑤𝑗𝑖
=

𝜕

𝜕𝑤𝑗𝑖
෍𝑥𝑖𝑤𝑗𝑖 = 𝑥𝑖

−1

𝑧 = 𝑓(𝑦1, 𝑦2, ⋯ , 𝑦𝑚)

𝑦𝑖 = 𝑔𝑖(𝑥1, 𝑥2, ⋯ , 𝑥𝑛)

𝜕𝑧

𝜕𝑥𝑖
=෍

𝑗=1

𝑚
𝜕𝑓

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑥𝑖

一般化連鎖律
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Deep Learningへ

• 4層以上の多層ニューラルネットワーク
• 6層から20層程度

• Googleの顔認識
• 右図のような構造の層を3つ
並べて構築してある
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第1層

第2層

第3層
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教師なし学習

•正解を与えないで学習させる方法

•入力が持つ特徴・構造などを抽出する

•具体例：
• クラスタリング

• ベクトル量子化

• 自己組織化特徴マップ
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K-means法

• クラスタリングの代表的アルゴリズム

• たくさんのデータをいくつかのクラスに分ける
1. 最初にランダムにクラスを割り振る

2. そのクラスを最も近い点とするデータを集める

3. そのデータの平均位置へクラスを移動させる

4. 2,3を、クラスが動かなくなるまで繰り返す

• デモのページ

38

http://tech.nitoyon.com/ja/blog/2013/11/07/k-means/
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強化学習

•目的だけを与えて、やり方は与えない

•試行錯誤を繰り返してやり方を見つける

•環境とエージェントとの対話
• 環境を観測

• 行動を決定

• 行動

• 環境の変化

• 報酬を得る

• 学習
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環境

エージェント

観測

決定

行動

遷移

報酬

学習
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Q学習

•強化学習の代表的な方法

•報酬の期待値であるQ値を学習する
• Q値：ある状態でのその行動の価値

• 正しいQ値が得られれば、大きな
Q値の行動を選択すると、大きな
報酬につながる

• ランダムなQ値はら始めて、正しい
Q値に近づけるのが学習

40

𝑄𝑠,𝑎 ← 𝑄𝑠,𝑎 + 𝛼(𝑟 + 𝛾max
𝑗

𝑄 ƴ𝑠,𝑗 − 𝑄𝑠,𝑎)

学習率

割り引き率

報酬

ゴール

エージェント
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まとめ

•第3次AIブーム
• 注目される深層学習
• その原理はバックプロパゲーション

• 教師あり学習の代表

• 人間の脳の神経回路を真似たニューラルネットワーク

• 3つの学習理論
• 教師あり学習
• 教師なし学習
• 強化学習→ 人間の脳は強化学習を行っている？

• 楽しいことをしたい
• 苦しいことはしたくない
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これからの
研究課題


